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Abstract

Encyclopedic metabolic networks capture the sum of human knowl-
edge of biochemical reactions and substrates as found across a mul-
titude of organisms, and not one particular organism. A method for
large-scale alignment of two such encyclopedic metabolic networks,
KEGG and MetaCyc, has been designed to allow for a systematic
comparison of their contents. A variety of methods for matching re-
actions and compounds in the two datasets and a method of scoring
the fitness of the alignment are proposed.

1 Introduction

Bioinformatics, though in the past exclusively associated with DNA analy-
sis, has grown to cover proteomics, metabolomics, and other such “omics”
subfields. Several Model Organism Databases (MODs) focus on not only a
community annotation of the MOD genome, but on describing its metabolism
as well in what is termed a multidimensional annotation [1].

As the amount of data available on the metabolic reactions and chemical
substrates increases, the necessity of central repositories of this data type
increases as well. In addition to the inclusion of metabolic data in MODs,
several encyclopedic repositories of metabolic network data have been set up
over the years, including EBI’s Rhea and ChEBI databases [2], KEGG [3],
and MetaCyec.

A natural question that one might ask is, “what is the difference be-
tween metabolic database X and Y?” In genomics and proteomics, there are



established methods and tools for performing such a comparison, such as
analyzing the sequence homology using techniques such as Smith-Waterman
or BLAST. Unfortunately, there is no current consensus for how to perform
a similar large-scale comparative analysis for metabolic networks, let alone
standard tools.

The benefit of such a method would be to allow researchers to evaluate the
contents of different encyclopedic metabolic network databases, and be able
to select the ones that would be most useful for their work. It will also en-
able the various encyclopedic metabolic network databases to evaluate where
they might be lacking information, and thus they can work to complete the
gaps in their knowledge. Finally, organizations such as National Center for
Biotechnology Information (NCBI) have recently started work on establish-
ing a central repository for such metabolic networks called BioSystems [4].
For such a repository to be of use, a method to map deposited metabolic
data to common identifiers will be essential.

Herein we describe a method for comparing two encyclopedic metabolic
networks, namely KEGG and MetaCyc. We will discuss the approach taken,
compare with existing tools and methods, and outline future work to be
undertaken.

2 Comparison of MetaCyc and KEGG

Before describing the methods by which the metabolic networks of KEGG
and MetaCyc have been compared, a discussion of the differences of these two
datasets is warranted. KEGG and MetaCyc are both part of large database
and software projects. All full discussion of the various different software,
online, and data file resources of both projects would be beyond the scope
of this work. Thus, the discussion is limited to the resources of each project
utilized for the purposes of comparison.

MetaCyc is a part of a larger collection of databases known as BioCyc
Database Collection [5]. BioCyc consists of 409 databases that combine
metabolic and genomic data, in what is termed a Pathway/Genome Database
(PGDB). The data represented by MetaCyc is the union of all metabolic
compound, reaction, and pathway knowledge represented in BioCyc, and
thus serves as a reference database for metabolic networks. Unlike other
PGDBs in the BioCyc collection, MetaCyc does not store any genomic (i.e.,
sequence) information.



The principle objects represented in MetaCyc for the purposes of this
study are compounds (i.e., chemicals), reactions, and proteins. Also used
was a class of objects known as “enzymatic reactions”, which help to depict
in a database the many-to-many relationship between reactions and the pro-
teins that catalyze them. While all of these objects have common properties
such as a unique identifier, a name, a description, external database links,
and links to related objects, each object has specific properties associated
with them. For example MetaCyc reaction objects can store an Enzyme
Commission (EC) number if it is describing such a reaction.

The KEGG database houses many kinds of data types. In [3], they de-
scribe over 19 datasets. Their data is accessible via their website services,
and as flat-file downloads available via FTP. The principle KEGG dataset
used in this study is the LIGAND dataset. The LIGAND dataset has evolved
over the years to contain not only chemical compound data, but now also
enzymatic activity data in their ENZYME file, and a listing of all reactions
described in KEGG in the REACTION file. All of KEGG’s flat-files are in an
idiosyncratic attribute-value format. It should be noted that the ENZYME
file in LIGAND is very similar to the ENZYME.dat file available from Ex-
PASy that describes the EC hierarchy of enzyme activities, except in that
it has been annotated by KEGG curators with references to corresponding
KEGG objects. KEGG also inherited a large database of glycogen molecules
known as GLYCAN. Specific care was needed in the processing of KEGG
data to exclude GLYCAN compounds and reactions, since MetaCyc does
not represent this area of biochemistry to the same extent.

For a number of years KEGG only stored reaction data in the ENZYME
file, such that KEGG only was describing EC reactions. As of release 46,
KEGG now includes additional reaction data in the REACTION file. A
peculiarity in the KEGG representation of their reaction data is that their
is some redundant information represented between the ENZYME file and
the REACTION file. In our work we had to be sure that not only were we
importing distinct reactions, but that we were depicting the correct reactions
as being official EC reactions as well.

In contrast to KEGG, the data from BioCyc can be analyzed by a powerful
suite of software known as Pathway Tools. Pathway Tools provides not only a
desktop application that allows for the visualization, navigation, and analysis
of the various types of objects stored in a PGDB, but also provides a rich
programming environment based on Common Lisp. The interactive Lisp API
provides for a fast method to prototype programmatic queries of MetaCyec.



Though both MetaCyc and KEGG are known primarily as pathway databases,

in this study we have limited our comparison to the metabolic network layer
concerning reactions and compounds. Our analyses have been agnostic to
the representation of pathways in KEGG and MetaCyc, which are differ sig-
nificantly [6].

2.1 Database Curation

A major difference between KEGG and MetaCyc is that the curation policy
of MetaCyc is to not only provide evidence codes for each asserted piece of
knowledge, but also to provide clear provenance for each assertion. Gene
Ontology (GO) Term-like evidence codes are available for pathways, and
there is a built-in system to credit authors that create or update manually-
curated information. From the KEGG datasets, it is unclear who might
have authored a particular entry. Furthermore, there are no equivalents to
evidence codes in their flat-files, which leave data consumers of KEGG to
rely on knowing which data types KEGG curates. For example, KEGG
manually creates their pathway reference maps, the compound data present
in LIGAND, and the REACTION data file. On the other hand, most of the
data that associates a particular reaction with a gene in a genome is based on
KEGG Orthology (KO) annotations, and is computationally derived. The
annotation of a particular KO number to a reaction is an example of a manual
curation step.

Another distinction between the two databases is the level of literature
citations and descriptions. While MetaCyc provides mini-reviews for certain
objects, such as pathways and enzymes, KEGG objects often lack even basic
description. KEGG also lacks links to PubMed and other journals, to help
verify that their data is in concord with the literature. A more thorough

comparison of the datasets can be found at the MetaCyc Literature Curation
Guide [7].



3 Methods

3.1 KEGG Loader for the BioWarehouse Relational
Bioinformatics Database Integration System

In order to systematically compare the contents of KEGG with MetaCyec,
it was first necessary to extract the KEGG metabolic network data into a
computable form. For this purpose we used SRI’s BioWarehouse database
integration system for bioinformatics [8]. The BioWarehouse contains soft-
ware for parsing KEGG data files (called the KEGG Loader) and mapping
the information to a common relational database schema. For the purpose
of this work, we have extended the KEGG Loader to parse the REACTION
file in the LIGAND dataset, and have imported KO identifiers as well.

As of version 50 of KEGG, the BioWarehouse KEGG Loader imported
15404 compounds and 9164 reactions. MetaCyc currently has 5425 small
metabolic compounds and 6798 small-molecule metabolism reactions.

3.2 Compound Match Prediction Methods

The most important step in aligning two graphs is to establish a mapping
between the two sets of vertices. The alignment of arcs relies on the quality
of the vertex mapping. In this work we have paid especially close atten-
tion to this point, and have developed a number of algorithms for mapping
compounds between KEGG and MetaCyec.

3.2.1 External Database Links in MetaCyc to KEGG

In the process of updating the MetaCyc knowledgebase, curators often add
database unification links to connect our data to external resources. As of the
writing of this paper, MetaCyc has 3321 database links from compounds to
entries in KEGG’s LIGAND dataset. These links served as the starting point
for the creation of a mapping between MetaCyc and KEGG compounds. It
should be noted that even though both MetaCyc and KEGG have database
links from their compounds to external databases (many of which are in
common), KEGG currently doesn’t link to MetaCyc compounds.



3.2.2 Common PubChem Identifiers in MetaCyc and KEGG

A resource that has proven to be very useful for this work has been the Pub-
Chem Project from the National Center for Biotechnology Information [9].
PubChem is a centralized resource for chemical compound information as
it relates to biological assays. Akin to the open deposition policy of Gen-
Bank, any organization can become a depositor of chemical information in
PubChem. All compounds deposited in PubChem go though a standardiza-
tion process that normalizes the chemical structures in terms of protonation,
groups, aromatization, and other aspects. After the structure has been stan-
dardized, it is entered into the PubChem Structure dataset, and given an
identifier unique to that deposition called a SID. After being entered into the
PubChem Structure dataset, PubChem attempts to unify each deposited
compound with compounds which are already present in PubChem. For
each group of compounds from different depositors that are successfully uni-
fied, the structure along with the sum of deposited information is stored in
the PubChem Compound dataset, and issued a unique identifier known as a
CID.

An analysis of PubChem’s Compound dataset revealed a number of com-
pounds which were associated with both MetaCyc (described as “BioCyc”
via the PubChem interface) and KEGG SIDs. A comparison of these associ-
ations to the database links already present in MetaCyc lead our curators to
add about 300 additional database links from MetaCyc compounds to KEGG
that were hitherto unknown.

3.2.3 Bi-Directional Best Hits of Tanimoto Similarity Scores

The comparison of two chemical structures can be reduced to the subgraph
isomorphism or substructure identification problem [10], which in turn has
been shown to be an NP-complete problemcitation. While both KEGG and
Pathway Tools have software for doing exact chemical sub-structure match-
ing, running a comparison of all unmapped KEGG compounds to MetaCyc
compounds would be prohibitively time-consuming. Fortunately there is a
resource available from PubChem known as the Score Matrix Service [11].
This web form gives researchers access to the “all versus all” molecular finger-
print comparisons used internally by PubChem for compound matching. A
molecular fingerprint in this case is a bit vector of length 880, each represent-
ing a binary feature of the molecule. The binary features represent simple



properties such as whether there are over a certain number of a specified
element in the molecule, or how many aromatic rings are present. This rep-
resentation allows for a fast determination of the similarity of two molecules,
since then a bit-vector similarity measure can be applied. In this case, a
Tanimoto coefficient is calculated, multiplied by 100, and is rounded to the
nearest integer. It should be noted that two compounds that have a Tanimoto
score of 100 are not necessarily isomorphic. What the molecular fingerprint
comparison gives up in the way of specificity, it gains in speed.

In analogy to the method used for determining orthologs from “all versus
all” BLAST or Smith-Waterman similarity scores, the bi-directional best hits
of the unmatched compounds between KEGG and MetaCyc can be calcu-
lated. The compounds selected for comparison are by necessity compounds
that had an assigned CID, for otherwise they would not be queryable via the
PubChem Score Matrix Service. Two sets of CIDs are selected: one from
the BioCyc deposition and the other from the KEGG deposition, with no
members present in both sets.

Because the Tanimoto coefficient was scaled and rounded to integers be-
tween zero and one hundred, often there were several matching compounds
with the highest matching value for a given query molecule. For that reason,
our definition of a bi-directional best hit excluded KEGG compounds where
there was ambiguity as to which compound in MetaCyc was the bi-directional
best hit. See Figure 1 for the distribution of “all versus all” Tanimoto scores
between unmatched compounds in MetaCyc and KEGG.

In future work, compounds that had ambiguity as to the true bi-directional
best hit, and that have a Tanimoto similarity score of 100, will be further
compared using an exact chemical sub-structure matching algorithm, to bet-
ter distinguish between nearly-identical compounds.

3.2.4 Exact Synonym Matching

A method for matching compounds that doesn’t rely on structural informa-
tion or database links is simply the compound names and synonyms. In this
method we build a hash table that relates various different names and syn-
onyms from MetaCyc compounds to the actual compound. We then iterate
over all of the compound objects in the KEGG BioWarehouse dataset, and
test the name and synonyms of the compounds against the hash table one at a
time, collecting any resulting matches to MetaCyc compounds. If the names
for the KEGG compound only map to one unique MetaCyc compound, then
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Figure 1: The distribution of Tanimoto similarity scores between KEGG and
MetaCyc compounds not mapped via PubChem
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Figure 2: The KEGG and MetaCyc depictions of EC reaction 1.8.99.3. Note
that while many compounds are shared in common, two pairs of similar
compounds are not mapped to one another.

it is recorded as a match.

3.2.5 Compound Identification by Reaction Alignment

Once two reactions are aligned, one can compare the two sets of compounds
which participate in the reactions. In the case where all but one of the KEGG
compounds in a given reaction were mapped to a MetaCyc reaction, and the
MetaCyc reaction is also lacking a match for a compound on the same side
of the reaction, we are able to use this information to infer a relationship
between the two compounds (see Figure 2).

3.3 Reaction Match Prediction Methods
3.3.1 Bi-Directional Best Hit of Stoichiometry Vector Difference

The comparison of chemical reactions is much more complicated than that
of a simple graph, since a reaction associates not only several chemical com-
pounds, but does so with a particular orientation. This notion of a reaction
can be thought of as a hypergraph arc.

In order to compare reactions to one another, we need a quantitative mea-
sure of how similar they are. One way to analyze a set of chemical reactions
is to represent them in a stoichiometry matrix. A stoichiometry matrix is a
matrix where each row represents a reaction, and each column represents a
chemical compound that participates in the reaction. The numbers in the
matrix represent the numerical coefficient for the corresponding compound



and reaction, with a value of zero given to compounds that don’t participate
in a particular reaction. The distinction of compounds between the set of
“reactants” and “products” is achieved by partitioning the coefficients into
positive and negative values.

Once you have reactions represented as vectors, you can use standard
techniques from linear algebra to determine the magnitude of the difference
vector obtained from the two reaction vectors:

[vp2 — vpl|

Vgiff = Min
w { [vpe + vpl|

Where the norm is given by:

Where n is the length of the vector, ¢; is the stoichiometric coefficient of
column 7, and f; is the frequency coefficient for compound ¢. The inclusion
of the frequency of the occurrence of compound ¢ in all of the row vectors of
the matrix is used to ensure that the lack of a very common compound, such
as water, does not unfairly bias the stoichiometry vector comparison.

3.3.2 Enzyme Commission Number Matching

The Enzyme Commission of IUBMB (EC) defines a hierarchy of enzymatic
activities. For each number in the EC hierarchy, a unique identifier known as
an EC number is assigned. EC numbers are in extensive use for characterizing
the catalytic properties of proteins (and their associated genes). Along with
giving a description of the enzymatic activity, the EC number in the EC
hierarchy often includes a reaction equation. For this reason, many of the
encyclopedic metabolic network databases include so-called EC reactions.
Currently there are 4533 active EC numbers in the EC hierarchy, which
provides a large common subset of reactions from which to align encyclopedic
metabolic networks.

Both KEGG and MetaCyc have a large sub-graph in common which con-
sists of the EC reactions. Alignment via EC numbers is straight-forward
in the case where there is only one reaction in each database for a given
EC number. In both databases there are EC numbers with more than one
associated reaction.
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3.3.3 Enzyme Mapping by KEGG Orthology and UniRef

Both KEGG and MetaCyc contain information about the enzymes that cat-
alyze their reactions. More specifically, KEGG often has UniProt accession
number database links from their Gene objects, and MetaCyc does as well
from its protein objects. Finding a common UniProt accession number be-
tween KEGG and MetaCyc can aid in mapping together reactions that are
catalyzed by the same protein sequence.

One problem with this approach is that MetaCyc only puts in a UniProt
link that is representative of the space of sequences that are known to perform
a particular catalytic function. Put another way, if there are twenty UniProt
entries for a particular EC number, and they are all 100% identical, then
MetaCyc will only contain a database link to one of the twenty sequence
accession numbers.

A solution to this mapping problem can be achieved by making use of
UniProt’s UniRef database. This database contains sequence clusters at 50%,
90%, and 100% identity. By mapping a KEGG UniProt accession number
and a MetaCyc UniProt accession number to the same UniRef cluster, es-
pecially in the case of UniRef 100, one can conclude that the two accession
numbers are referring to the same sequence.

We justify the use of TrEMBL in addition to SwissProt sequence data
in that we are using the UniProt interface to UniRef mainly to achieve the
sequence redundancy reduction and mapping via UniRef clusters. We are
relying on the fidelity of the KEGG and BioCyc external database links to
UniProt in order to provide meaningful results.

3.3.4 Exact Synonym Matching

As with the compound data, an exact name matching approach was taken for
mapping KEGG reactions to MetaCyc reactions. In contrast to the approach
taken with the compound mapping, we gather name and synonyms not only
for the reaction objects in the KEGG BioWarehouse dataset, but also from
the associated enzymatic reaction objects and enzyme objects as well.

3.4 Initial Alignment

For the first step in the iteration, we wish to be more conservative with our
predictions, for subsequent predictions will only amplify any errors made in

11
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Figure 3: Mapping enzymes between MetaCyc and KEGG. The mapping
on the right shows the case where there is a shared UniProt accession num-
ber between the two datasets. The mapping on the left shows how different
UniProt accession numbers can be related to one another by common mem-
bership in a UniRef cluster.
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the initial mapping. For each non-structural mapping approach, there should
be corroborating evidence from a structural mapping approach. For example,
if a compound has an exact string match, but the structures are completely
different, then something is obviously wrong, and the match shouldn’t be
made. Similarly, if a map between reactions is made via EC numbers or
UniRef, it should be validated using a stoichiometry vector comparison.

3.5 Iterative Alignment Refinement

Once the initial set of predicted compounds and reactions have been added
to the metabolic network, we can iterate between compound predictors and
reaction predictors until no new associations are predicted. Compound pre-
dictors such as the reaction alignment method described previously rely on
reaction data, and reaction predictors such as the bi-directional best hit sto-
ichiometry vector difference, rely on compound data. This inter-dependence
allows for the method to iterate until no new predictions are made.

It must be stressed that due to known duplicate compounds and reac-
tions, that any alignment method must be flexible enough to allow for such
occurrences.

3.6 Alignment Score

The aspects of this comparison guide the selection of an appropriate set of
metrics:

1. There is a large aligned sub-graph present in both the KEGG and Bio-
Cyc databases, as they both represent the full set of reactions described
by the Enzyme Commission within their networks.

2. Due to differences in manual curation approaches and areas of interest,
there is no assumption that both datasets have covered the breadth
of human knowledge on metabolism to the same degree (beyond the
common EC reaction core) in similar parts of the network. For that
reason, we do not wish to penalize non-overlapping sub-networks.

3. Because the KEGG notion of a pathway is significantly different than
the pathways in BioCyc, the comparison is done at the level of reactions
and molecules.
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4. To take stoichiometry into account, reactions are modeled as vectors
in a stoichiometry matrix.

5. All of the molecules in the KEGG and BioCyc network have been com-
pared using the molecular fingerprint Tanimoto similarity score avail-
able from PubChem.

With that said, the following scoring scheme was determined:

c R
score = Zti — Zvdiff(j)
i J

.. where a compound match score t; is 1 for exactly matched compounds,
and otherwise the Tanimoto coefficient of the two molecular fingerprints
as obtained from PubChem. wg;ss(j) is the vector difference between the
matched reactions in KEGG and MetaCyec.

4 Conclusion

4.1 Comparison with Other Methods

Most of the literature on aligning graphs in a biological context is concerned
with finding conserved motifs, whether for sequence data or for those of bio-
chemical networks. In Berg et al. [12], they discuss a method they term
“local graph alignment” for the detection of local motifs in gene regulatory
and protein-protein interaction networks. Their method builds a statistical
model of the motif from aligning the interaction networks from several ex-
periments. In Fratkin et al. [13], they develop a method termed MotifCut
for the detection of novel sequence motifs, which relies on determining the
maximum density subgraph among all k-mers of a sequence.

These approaches differ from the work described above in that they are
seeking to detect subtle patterns based on data analysis. For the alignment
of large encyclopedic metabolic networks, the entity types are distinct as are
the instances of both reactions and compounds. The essence of the problem
is to disambiguate two differing representations of the same system.
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4.2 Future Work

The work described here is currently in progress at SRI’s Bioinformatics
Research group under the direction of Dr. Peter D. Karp.

In addition to implementing all of the predictors described herein, there
are further steps that can be taken to improve the quality of the alignment.
Instead of strict exact string matching for names and synonyms of com-
pounds, one might use the techniques from text-mining to cast the problem
in the framework of Information Retrieval. Also, many of these predictors
discard ambiguous matches, such as when the bi-directional best hit of the
Tanimoto score for a compound matches more than one compound in the
target database. A more refined algorithm would handle these situations
as a special case of the general mapping problem. In the specific case of
compounds with ambiguous bi-directional best hit Tanimoto scores of 100, a
formal sub-structure matching algorithm can be applied.
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